A family of simple Lie algebras in characteristic two

نویسنده

  • G. Jurman
چکیده

As reported by A.I. Kostrikin in his paper [21], the very first algebra which distinguished modular (i.e. over fields of positive characteristic p) Lie algebra theory from the classical one was the Witt algebra W (1 : k), where k is a power of p. This algebra is a generalization due to H. Zassenhaus [31] in the thirties of an analogous structure defined by E. Witt over the integers. This algebra is graded over the elementary abelian additive group of the field Fk and, for p > 2, it is simple. When the characteristic is two W (1 : k) has exactly one non-trivial ideal, namely its derived subalgebraZk. The simple object is called a Zassenhaus algebra. In characteristic two, a Zassenhaus algebra admits a non-singular outer derivation, which is quite an important feature (see [3]). In the following years, further generalizations of the above structure led to the construction of other families of simple Lie algebras,called algebras of Cartan type (see [29]), namely the generalized Jacobson-Witt algebras, the special algebras, the hamiltonian algebras and the contact algebras. Kostrikin and I.R. Shafarevich during the sixties conjectured that, apart from the small characteristic case, every finite-dimensional simple Lie algebra over an algebraically closed field is either classical or of Cartan type. Recently this was proved true for p > 7 by H. Strade

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Classification of finite dimensional simple Lie algebras in prime characteristics

We give a comprehensive survey of the theory of finite dimensional Lie algebras over an algebraically closed field of prime characteristic and announce that the classification of all finite dimensional simple Lie algebras over an algebraically closed field of characteristic p > 3 is now complete. Any such Lie algebra is up to isomorphism either classical or a filtered Lie algebra of Cartan type...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Some new simple Lie algebras in characteristic 2

We describe an algorithm for computing automorphism groups and testing isomorphisms of finite dimensional Lie algebras over finite fields. The algorithm is particularly effective for simple or almost simple Lie algebras. We show how it can be used in a computer search for new small-dimensional simple Lie algebras over the field with two elements.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001